The realization space is [1 1 0 1 0 1 1 0 1 1 x2] [1 0 1 -3*x1*x2 + x1 + x2^2 + x2 0 1 0 x2 - 1 -3*x1*x2 + x1 + x2^2 + x2 x2 x2^2 - 2*x2 + 1] [0 0 0 0 1 1 1 x2 x1 x2 x2^2] in the multivariate polynomial ring in 2 variables over ZZ within the vanishing set of the ideal Ideal with 2 generators avoiding the zero loci of the polynomials RingElem[x2, 2*x2 - 1, x2 - 1, x1 - x2, 3*x1*x2^3 - 3*x1*x2 + x1 - x2^4 - x2^3 + x2^2, x1, 3*x1*x2^2 - x1*x2 - x2^3 - 2*x2 + 1, 3*x1*x2^3 - 3*x1*x2^2 - 2*x1*x2 + x1 - x2^4 + x2^2 + 2*x2 - 1, 3*x1*x2^2 - x1 - x2^3 - x2^2 - x2 + 1, 3*x1*x2^2 - x1*x2 - x2^3 - x2^2 - x2 + 1, x2^2 - 3*x2 + 1, 3*x1*x2^3 - 4*x1*x2^2 + x1*x2 - x2^4 + x2^2 + 2*x2 - 1, 3*x1*x2 - x1 - x2^2 - x2 + 1, 3*x1*x2 - x1 - x2^2 - x2, 3*x1*x2^2 - x1 - x2^3 - x2^2 + x2, 3*x1 - x2 - 1, 3*x1*x2 - x1 - x2^2, 3*x1*x2^2 - 4*x1*x2 + x1 - x2^3, 3*x1*x2^2 - x1 - x2^3 - x2^2, 3*x1*x2^2 - x1 - x2^3 - x2^2 + 1, 3*x1*x2 - 2*x1 - x2^2 - x2 + 1, x1 - 1, 3*x1*x2^2 - x1*x2 - x2^3 - x2^2 + 1]